Hybrid Electric Integrated System Testbed (HEIST) and Full Scale Testing Update of the LEAPTech Wing

Presented By:

Andrew Gibson

President/Aerospace Engineer

Empirical Systems Aerospace, Inc. (ESAero)

Central Coast, California

Material Support: Sean Clarke, AFRC, Trevor Foster, ESAero

For:

Advanced Vertiport Capable Flight Capabilities Panel Discussion August 3rd, 2015

ESAero Electric, Hybrid Electric and DEP

- Working E, HE and DEP Air Vehicle Development since 2008 over 8 Phase I,
- 2 Phase II & 2 Phase III SBIRs and AFRL Efforts for Fixed Wing and VTOL:
 - Multiple "Tube & Wing" DEP Concept Developments
 - Hybrid Helicopter/VTOL System Design, Development and Optimization
 - Multi-Disciplinary Electric Propulsion System (including Components) and Air Vehicle Sizing Tools (VTOL and Fixed Wing); PANTHER
 - Thermal Management System Sizing
 - Performance and Mission Analysis Methodologies and Tools
 - "ePHM" Prognostics and Health Management (with General Atomics IS)
- Industry Efforts have supported AeroVironment, Boeing R&T, Lockheed Martin ADP, General Atomics SPO, Electricore Inc., and others.

ESAERO NASA

AEP Roadmap to TRL 6 at Different Sizes (AVIATION '15)

Near Term Test Facilities at AFRC

Hybrid Electric Integrated Systems Testbed (HEIST)

Modular Architecture to Allow for Multiple Configurations to Enable Larger Systems to be Designed; Decoupled Energy Management

 Using Distributed Electric Propulsion for flight control will be dynamic!

Flight Simulator Controlled

Verification of Failures and Modes

HEIST LEAPTech Participants

- Oversight / Host
- > Requirements Management
- Master motor controller
- > Test Execution
- Safety Review Process

NASA LaRC

- > LEAPTech lead (PI)
- > Wing aero design
- CFD analysis
- Structural analysis

Empirical Systems Aerospace, Inc.

- Top level engineering
- > Instrumentation
- System Integration
- > System IOC

Joby Aviation

- > Wing Manufacturer
- Motors, motor speed controllers, propellers
- Test Rig (truck platform) fab, force balance design

Overview - LEAPTech

Leading Edge Asynchronous Propeller Technology

32 ft Carbon Wing 18 Joby JM-1 Electric Motors Custom Test Stand w/ water ballast Converted Water Truck

Primary Objective:

-Show Benefits of Propulsion-Airframe Integration

-Validate CFD for High Speed Cruise Efficiency

Secondary Objectives:

-Demonstrate Rapid Testing and

Development in Unique Partnership between NASA and Small Business

Derivative Objectives:

-Many Opportunities Exist

HEIST Design Phase I

Sensor 'Buy-On' Criteria Safety Critical **Mission Critical Technically Desired**

Wiring/Sensor layout

HEIST Design Phase II

Harness Fabrication

HEIST Design Phase III

Harness Installation

HEIST Design Phase IV

Final Installation and Termination

E|S|AERO NASA

Requirements

- Aerodynamic Performance
 - Pressure strips for upper surface pressure distribution
 - High frequency pressure transducers for instantaneous pressure behind prop
 - Air data probe for airspeed and AoA
- Aerodynamic Forces
 - Load cells placed in an force balance system to acquire thrust, drag, lift, & yaw (Critical)
- Aeroelasticity
 - Accelerometers at multiple locations
- Temperature of Electronic Components
 - Resistive Temperature Detectors (RTDs) place in key electronics for thermal monitoring (Critical)

E|S|AERO NASA

Requirements Cont.

- Groundspeed
 - GPS unit to monitor ground speed
- Data Storage and Telemetry
 - Solid state hard drive for storage of video and sensor data
 - S-band antenna for telemetry
- Motor/Controller Performance
 - Motor and controller data gathered from CAN bus (rpm, Critical)
- Use of readily available equipment to develop a rapid proof of concept

System overview

- -Custom Force Balance with 7 Load Cells
- -60 RTD Temperatures
- -120 Pressure Measurements using ESDs and Strip-A-Tubing
- -8 High Speed Transient Pressures
- -3 Uni, 3 Biaxial, 2 Triaxial Accelerometers
- -Air Data Probe with Alpha & Beta vanes
- -2 Inclinometers
- -3 HD Cameras
- -GPS & S-Band Transmitter

Powered using an isolated battery pack consisting of the same capacity and chemistry cells as the primary motors

- 9S1P CALB LiFePO4 180Ah
- Chosen for rapid TechBrief approval

Highlighting Some Key Sensor Integrations on the Following Slides

LEAPTech Primary Data Acquisition TTC MCDAU-2000/F

Location: Center wing section

Mounting Requirements: Bolt to plate on aft spar

Skin Perforations: None

Cabling: Receives cabling from all other components

Access: Hatch in center body between fwd and aft spar.

As large as reasonable. Minimum 20"x6.5"

Length: 2.49"

Width: 2.63"

Height variable

Weight: variable

Data Rate: 5.0 Mbps @ 12-bit

Power: 28V @ 230w

Operating temperature: -35°C to +85°C

Storage temperature: -55°C to +100°C.

Random vibration: 15grms, 20-2kHz, 10min, any axis.

Acceleration: 25g, indefinite duration, any axis.

Shock: 15g, half-sine, 11 mS, 6 shocks, any axis.

Humidity: 5-95% RH, non-condensing.

Altitude: 0 to +200,000 ft. (unlimited).

MCDAU-2000

LEAPTech Wiring Harness Design

EMI Mitigation

- Dual Isolated Shields
- Harnesses and Connectors wrapped to prevent electrical contact with frame

-Sensors bonded to carbon frame have fiberglass base layer

LEAPTech Surface Pressure

 ESP Pressure Scanner units to gather data for determining pressure distribution

LEAPTech Surface Pressure

LEAPTech Force Balance

- Drag, FWD/AFT Lift
- Side Slip (STB)
- Triaxial Accelerometer
- Adjustable AoA

LEAPTech Operations

- Joby Power System and ESAero/Armstrong Instrumentation Data Requirements will support multiple runs per day.
- Mobile Test Platform is being Tested at NASA Armstrong on Dry Lake Bed
 - Primary Runway is 5/23
 - Backups are 18/36 and a portion of 15/33.

E|S|AERO NASA

First High Speed LEAPTech Test

Convergent Aeronautics Solutions SCEPTOR

ESAERO NASA

Scaled Convergent Electric Propulsion Technology Operations Research

PHASE I

Concurrent Activities

Requirements Definition, Systems Analysis, Wing System Design, Design Reviews

Ground validation of DEP highlift system

Flight testing of baseline Tecnam P2006T

Goals:

- Establish Baseline Tecnam
 Performance
- Test Pilot Familiarity

PHASE II

Concurrent Activities

Ground and flight test validation of electric motors, battery, and instrumentation.

Goals:

- Establish Electric Power System Flight Safety
- Establish Electric
 Tecnam Retrofit Baseline

PHASE III

Flight test electric motors relocated to wing-tips, with DEP wing including nacelles (but no DEP motors, controllers, or folding props).

Achieves Primary Objective of High Speed Cruise Efficiency

More Partners TBD!

PHASE IV

Flight test with integrated DEP motors and folding props (cruise motors remain in wing-tips).

Achieves Secondary Objectives

- DEP Acoustics Testing
- Low Speed Control Robustness
- Certification Basis of DEP Technologies

Applying Lessons Learned for SCEPTOR

- Distributed DAQ system
 - More conventional
 - Reduces EMI
 - Reduces weight/volume concerns
- Connector Improvements (pressure tubing, etc.)
- Strict configuration control
- Fully detailed CAD model
- CML concept to interface with requirements
- Improved Isolation / Grounding
- System Engineering Approach

Current Design of SCEPTOR (REV3 Mod3)

Courtesy Nick Borer, NASA Langley SCEPTOR Propulsion and Vehicle Sizing IPT Lead

How will AEP Become Reality Across Vehicle Classes

Two-Tiered Approach

- High-power density electric motors
- Electrical component and

Early Conceptual Design!

all-electric aircraft architectures: Low TRL Visionary and Revolutionary Concepts, **Designs, Methodologies and Tools**

- Hybrid electric 150 PAX
- Turboelectric 150 PAX

- Hybrid electric 100 PAX regional
- Turboelectric distributed propulsion 150 PAX
- All electric 50 PAX regional (500 mile range)

Hardware!

- Gain Experience with the Systems. Drid electric 50 PAX regional
- Operations; e-Fan, Joby, Pipistrel, etc.
- High Power Lab Systems; Ironbirds, AirVolt, HEIST
- Multidiscipline System Integrations; LEAPTech, SCEPTOR

Design and Develop potential joint (NASA/AFRL/Industry) Propulsion Airframe and Thermal Integration (PATI) system demonstrations with a Spiral Development path (Roadmap).

Spiral Development

kW to MW Systems; Ground, Early Flight (CEPT) and Beyond

- Lessons learned on Packaging DEP wiring, instrumentation and nonpropulsion electrical systems in a high aspect ratio wing.
- EMI Concerns
- Thermal Management, Cooling for Motor/Motor Controller and DEP
- Verification and Validation of Flight Motors and Motor Controller (ePHM)
- Tool Validation
- Establish Standards for Electric Propulsion Airworthiness (ASTM F39)
- System Weight/Volume Restrictions
- Emergency Recover from DEP Motors and Wing-Tip Cruise Motor Failures (ePHM)
- Decoupled Energy Management; Autonomous Power Management and Distribution (PMAD) System Controller(s) with Multiple Power Sources; Coupled to Flight Control System.

Transformative VTOL Future Call for Papers AVIATION '16'

- Air Transportation Integration & Operations Unique and/or Transformational Flight Systems
- Transformational Flight Program Committee

"Technical Papers are requested relating to Advanced Manned/Unmanned Concepts, Electric Propulsion Integration and Component Technologies, Autonomy/Self-Flying Aircraft/Simplified Vehicle Operations, and On-Demand Mobility Emergent Aviation Market Studies. Papers are also requested on any topic of interest relative to V/STOL, including Design, Analysis and Test. This includes STOL Aircraft and VTOL Aircraft, regardless of Propulsion System Type".

- Advanced/Transformational Aircraft Concepts
- Electric Propulsion Integration and Component Technologies
- On-Demand Mobility Emergent Aviation Market Studies
- V/STOL Aircraft Design, Aircraft Analysis, and Ground and/or Flight Test
- Transformational System Design, Development, Analysis, Materials,
 Operations and Support

Thank You!

andrew.gibson@esaero.com